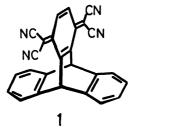
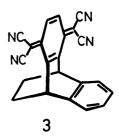
THE CHARGE-TRANSFER TRANSITION FOR THE SYMMETRY-FORBIDDEN CHARGE-TRANSFER INTERACTION IN THE C $_{\rm S}$ SYSTEM.

9,10-DIHYDRO-9,10-ETHANO-[1,4]-BIS(DICYANOMETHYLENE)ANTHRACENES

Kimiaki YAMAMURA, Kazuhiro NAKASUJI, Hideki YAMOCHI, Tichiro MURATA, and Satoshi INAGAKI


Department of Chemistry, College of General Education, Kobe University, Nada-ku, Kobe 657

† Department of Chemistry, Faculty of Sciences, Osaka University, Toyonaka, Osaka 560


†† Department of Industrial Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11

Some 9,10-dihydro-9,10-ethano-[1,4]-bis(dicyanomethylene)-anthracene derivatives have been synthesized. The substituent effects on the charge-transfer band shifts of these compounds strongly supported our previously proposed argument for the charge-transfer transition for the symmetry-forbidden charge-transfer interaction.

In the course of our studies on the intramolecular charge-transfer complexes which contain the nonparallel electron-donor and acceptor components incorporated in a rigid framework, 1) we have recently proposed and substantiated a novel notion — the charge-transfer transition for the symmetry-forbidden charge-transfer interaction, by employing 1,4-dihydro-1,4-bis(dicyanomethylene)triptycenes(1). 2) This notion 3) implies that the orbitals involved in the ground-state CT interaction are not necessarily the same as those involved in photo-exicitation. Furthermore, this argument was confirmed by the substituent effects on the CT band shifts in 9,10-

dihydro-9,10-o-benzenoanthracene-1,4-diones(2). Both 1 and 2 belong to the \mathcal{C}_{2v} point group. In principle, this argument should be applicable to the molecules which belong to the \mathcal{C}_s point group. We have chosen 9,10-dihydro-9,10-ethano-[1,4]-bis(dicyanomethylene)-anthracene(3) as a model compound to examine the applicability.

The HOMO and the LUMO of 3.

localize on the electron-donating
benzene and the electron-accepting
TCNQ rings, respectively. The degenerate highest occupied orbitals
of benzene are split into HOMO(a")
and HOMO(a') by ortho cycloalkyl

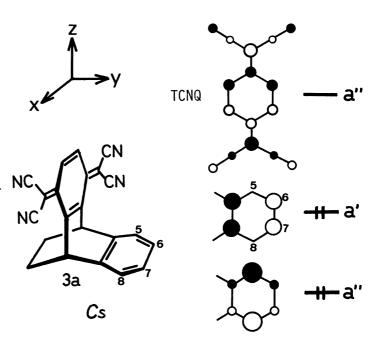


Figure 1. The high-lying MO's of electron-donating benzene ring and the LUMO of TCNQ in 3a. The coordinate axis are taken for convenience.

fusion⁵⁾ as shown in Figure 1. In the \mathcal{C}_s point group both electronic transition, $\operatorname{HOMO}(a') \to \operatorname{LUMO}(a'')$ and $\operatorname{HOMO}(a'') \to \operatorname{LUMO}(a'')$ are symmetry-allowed. However the CT interaction between $\operatorname{HOMO}(a')$ and $\operatorname{LUMO}(a'')$ is symmetry-forbidden. The AO coefficient in the $\operatorname{HOMO}(a')$ is zero at 5- and 8-positions and large at 6- and 7-positions. It is then predicted that 5- and/or 8-substituents on 3 show little effect on the wavelength of the lowest energy absorption band while electron-donating 6- and/or 7-substituents cause a red shift.⁶⁾

The parent compound(3a), 5,8-dimethoxy(3b) and 6,7-dimethoxy derivatives(3c)

$$H_3C$$
 CH_3
 YH_2C
 CH_2Y
 NC
 R
 $S=CO_2CH_3$
 $S: Y = H$
 $S: Y = Br$
 $S: Y = CN$
 $S: Y = CN$
 $S: Y = CN$
 $S: R = 6.7-di-OCH_3$
 $S: R = 6.7-di-OCH_3$

were synthesized to examine the prediction. Diels-Alder adducts(4) of dimethyl acetylenedicarboxylate with the corresponding 1,4-dimethylanthracenes were converted into 1,4-dimethyl-dibenzobarrelenes(5) by hydrolysis and subsequent decarboxylation in 58~64% yields based upon 1,4-dimethylanthracenes, this route being reported for the synthesis of 2-substituted dibenzobarrelenes by Figeys and Dralants. Hydrogenation of 5 on Pd-C gave 9,10-dihydro-9,10-ethano-1,4-dimethyl-anthracenes(6) almost quantitatively. Bis(cyanomethyl)derivatives(8) were obtained through the bromination with NBS of the methyl groups on 6, followed by cyanation with KCN in DMSO in 57~60% yields. Conversion of 8 into 2 was achieved essentially according to the well-known Wheland-Martin procedure for TCNQ synthesis as well as our synthesis of 1 reported previuosly, 2,9) though in poor yields(ca 6%). The structure of 3a~3c were confirmed on the basis of their elemental analyses and consistent NMR data. 10)

The electronic absorption spectra of $3a \sim 3c$ are shown in Figure 2. In contrast to $1,^{2,9}$ 3a shows the CT absorption band as a shoulder submerged in the strong absorption band of TCNQ moiety. The absorption maxima of the CT band remains

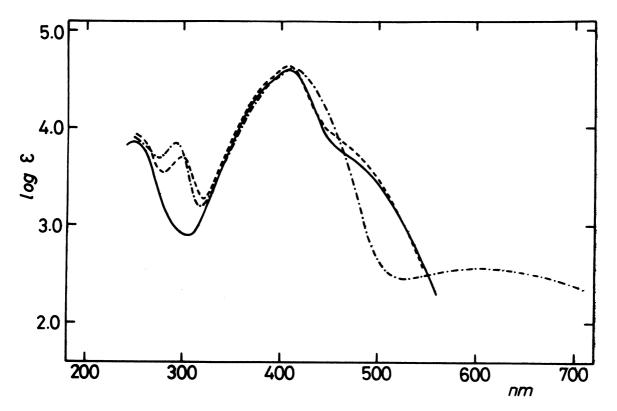


Figure 2. Electronic spectra of 3a(----), 3b(----), and 3c(----) in dichloromethane.

almost unchanged on the methoxy substitution at the 5- and 8-positions (3b) whereas the methoxy groups at 6- and 7-positions in 3c cause the substantial red shift. These results confirm the CT transition for the symmetry-forbidden CT interaction in the \mathcal{C}_s system.

Since such a CT transition for the symmetry-forbidden CT interaction should be polarized perpendicular (x) (see Figure 1.) to the donor-acceptor axis, 3) experimental determination of the transition moment for 1 and 3 is of interest and the subject of our current attention.

References

- 1) T. Nakazawa and I. Murata, J. Am. Chem. Soc., 99, 1996 (1977).
 H. Yamochi, K. Nakasuji, T. Nakazawa, and I. Murata, Chem. Lett., 1982, 459, and references therein.
- S. Inagaki, K. Yamamura, K. Nakasuji, T. Nakazawa, and I. Murata, J. Am. Chem. Soc., 103, 2093 (1981).
- 3) For general discussion: see, K. Nakasuji, H. Yamochi, I. Murata, K. Yamamura, and S. Inagaki, J. Org. Chem., in press.
- 4) K. Yamamura, K. Nakasuji, I. Murata, and S. Inagaki, J. Chem. Soc., Chem. Commun., 1982, 396.
- 5) L.N. Domelsmith, P.D. Mollere, K.N. Houk, R.C. Hahn, and R.P. Johnson, J. Am. Chem. Soc., 100, 2959 (1978).
- 6) In view of distribution of HOMO(a") coefficients, the magnitude of the substituent effects at 5- and/or 8-positions on the wavelength of the second CT transition band should be greater than that of 6- and/or 7-positions.
- 7) H.P. Figeys and A. Dralants, Tetrahedron, 28, 3031 (1972).
- 8) R.C. Wheland and E.L. Martin, J. Org. Chem., 40, 3101 (1975).
- 9) K. Yamamura, T. Nakazawa, and I. Murata, *Angew. Chem.*, *Int. Ed. Engl.*, <u>19</u>, 543 (1980).
- 10) 3a: orange prisms, mp >300°C, 1 H-NMR(100 MHz, CD₂Cl₂) δ 7.46 \sim 7.16(AA'BB', 4H), 7.41(s, 2H), 5.67(bs, 2H), 1.80(m, 4H). 3b: green powder (red in a CH₂Cl₂ solution), mp 278 \sim 280°C(dec.), 1 H-NMR(100 MHz, CDCl₃) δ 7.40(bs, 2H), 6.67(s, 2H), 6.11(bs, 2H), 3.82(s, 6H), 1.77(bs, 4H).
 - 3g: green powder, mp >300°C, 1 H-NMR(100 MHz. $^{CD}_{2}$ Cl $_{2}$) δ 7.40(s, 2H), 6.95(s, 2H), 5.57(bs, 2H), 3.81(s, 6H), 1.79(m, 4H).

(Received February 4, 1983)